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Abstract—In this paper, we develop new methods to au-
tomatically detect the onset and duration of freezing of
gait (FOG) in people with Parkinson disease (PD) in real
time, using inertial sensors. We first build a physical model
that describes the trembling motion during the FOG events.
Then, we design a generalized likelihood ratio test frame-
work to develop a two-stage detector for determining the
zero-velocity and trembling events during gait. Thereafter,
to filter out falsely detected FOG events, we develop a point-
process filter that combines the output of the detectors with
information about the speed of the foot, provided by a foot-
mounted inertial navigation system. We computed the prob-
ability of FOG by using the point-process filter to determine
the onset and duration of the FOG event. Finally, we vali-
date the performance of the proposed system design using
real data obtained from people with PD who performed a set
of gait tasks. We compare our FOG detection results with
an existing method that only uses accelerometer data. The
results indicate that our method yields 81.03% accuracy in
detecting FOG events and a threefold decrease in the false-
alarm rate relative to the existing method.

Index Terms—Parkinson disease, freezing of gait, inertial
sensors, accelerometer, gyroscopes, point-process filter.

I. INTRODUCTION

PARKINSON disease (PD) is a neuro-degenerative disorder
that affects 1–1.5 million people in the United States alone.

The main cause of PD is a loss of dopaminergic, sub-cortical
neurons, which leads to motor impairments [1]. Many individ-
uals with PD experience difficulty walking, the emergence of
which is considered as a red flag for onset of disability [2].
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Approximately 50% of people with PD experience freezing of
gait (FOG), a “brief, episodic absence or marked reduction of
forward progression of the feet despite the intention to walk”
[3]. FOG events, which are a known risk factors for falls, occur
suddenly, generally last for a few seconds, and tend to increase
in frequency and duration as the disease progresses.

The most commonly prescribed medication to improve symp-
toms in people with PD is levodopa. The effective period of the
drug varies between two and six hours [4], and decreases as the
disease progresses [5]. Recent studies have shown that cueing
techniques that apply spatial or temporal external stimuli as-
sociated with the motor activity enhance gait and reduce FOG
[6], [7]. For example, auditory stimulation (see e.g., [8], [9])
and visual markers are used as cueing mechanisms to improve
locomotor function in people with PD. Currently, to validate the
severity of FOG, clinicians use patient questionnaires such as
the new FOG-Questionnaire (NFOG-Q) [10] that rely on pa-
tient self-report. There is a growing need to develop automated
methods for detecting FOG, with the ultimate goal of being able
not only to measure but also to predict and prevent episodes of
FOG.

In the last decade, methods using wearable technology for
monitoring and assessing gait patterns and FOG have been de-
veloped with varying success. These methods variously employ
a) electromyography (EMG) sensors [11], [12]; b) force resis-
tive sensors [13], [14]; c) video-based gait analysis [15], [16];
or d) inertial sensors (accelerometers and gyroscopes) [4], [17]–
[24]. In the case of inertial sensors, the spectral characteristics
of the accelerometer signal in the vertical direction provide in-
formation that is helpful in distinguishing FOG patterns from
normal PD gait patterns. For example, researchers use the spec-
tral characteristics of the accelerometer signal to develop a four
stage automatic gait detection algorithm [17], [18]. In prior re-
ports, a freeze-index (FI) is defined as the ratio of the square
of the power spectrum in two different non-overlapping fre-
quency bands [19]. An extension of the FI method for a variable
size window and online detection is presented in [20], [21],
[25]. The use of machine learning methods to classify features
extracted from the accelerometer signal that capture the unco-
ordinated nature of the gait, such as trembling of the feet, short
stride lengths, and unstable walking, is explored in [22]–[24].
However, the preceding methods do not necessarily present a
signal model that captures the FOG patterns explicitly, and they
use long window lengths to compute the spectral character-
istics of the accelerometer signal, which leads to delays when
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Fig. 1. Using the accelerometer data, Detector-I (red-dashed rectangle in (a)) filters out gait patterns (MOVE) that are neither ZVEI nor TREI
(red-dashed ellipse in (b)). Detector-II (blue-dashed rectangle in (a)) uses information from the gyroscope, to distinguish ZVEI (blue-dashed circle
in (b)) from TREI. The region detected by Detector-I also contains gait patterns with energy information similar to that of TREI (orange region in
(b)). To identify FOG (gray region in (b)), a point-process filter (black-dashed rectangle in (a)) combines the information of Detector-II with the speed
of the foot, provided by the inertial navigation system. Regions with high probability of freezing of gait indicate FOG (black-dashed outline in (b)).
FOG is a reflection of both ZVEI and TREI, and thus the FOG region which lies inside TREI region shares a common boundary with the ZVEI. (a)
A block diagram of the system used to calculate the pFOG. (b) An illustration of the subsets of the gait patterns that the different detectors and
point-process filter identify.

determining the onset of the FOG event. Further, methods devel-
oped using machine learning techniques lack explanatory power
and provide limited utility for understanding the structure of the
data [26].

To overcome these drawbacks, here we develop a physical
model for the sensor data, design statistical signal processing
methods to detect FOG based on its patterns, and compute the
probability of FOG (pFOG). The goal of this work is to auto-
matically detect the onset and duration of FOG in people with
PD in real-time. The modeling results of this work can also help
understand the physical mechanism of gait patterns in PD.

Notations: The following general notation will be used
throughout the paper. Bold uppercase and lowercase letters de-
note a matrix and vector, respectively. Superscript/subscript a
and ω represent accelerometer and gyroscope signals, respec-
tively. For any real matrix A, AT , A−1 , and Tr {A}, denote
the transpose, inverse, and trace of A, respectively. In repre-
sents an identity matrix of n-dimension. 11n is an n-dimensional
column vector of all ones. We denote �2-norm as ‖·‖. The expec-
tation and covariance operator are denoted as E{·} and Cov{·},
respectively. The random scalar x ∼ χ2

n has a chi-square distri-
bution with n degrees of freedom. The random n-dimensional
vector x ∼ N (p,Σ) is multivariate Gaussian, distributed with
mean p and covariance Σ.

II. SYSTEM OVERVIEW

To detect and track FOG in real-time, we propose the system
design as shown in Fig. 1. To capture gait motion, we use a
MEMS-based inertial measurement unit (IMU) which consists
of a three-axis accelerometer and a three-axis gyroscope. The
IMU is strapped to the heel region of the foot of the participant,
as shown in Fig. 2. Our system design consists of three modules,
namely the detection, tracking, and filtering modules.

The detection module includes a two-step detection algorithm
to determine instances of zero-velocity event intervals (ZVEI)
and trembling event intervals (TREI). In Section III-B, we

Fig. 2. Gait patterns. (a) Zero-velocity event intervals (ZVEI) are asso-
ciated with the flat foot phase of a gait cycle. (b) Trembling event intervals
(TREI) are associated with the heel lift-off and heel strike phase of a gait
cycle.

derive the first detector which can detect ZVEI or TREI; this
detector cannot separate these two events. In other words, the
goal of the first detector is to filter out gait patterns that cannot
be classified as ZVEI or TREI. In Section III-C, we derive the
second detector, which uses information from the gyroscope
to distinguish ZVEI from TREI. This is necessary because the
ZVEI/TREI identified by the first detector contains some gait
patterns modeled as trembling events, but not associated with
FOG. The second detector only detects ZVEI and cannot filter
out those gait patterns identified as TREI which are not associ-
ated with FOG. Therefore, to detect the FOG region, which is
a reflection of both ZVEI and TREI, we use the fact that FOG
is characterized by small foot speeds [27], [28]. Note that in
Fig. 1(b), the FOG region lies inside TREI region and shares a
common boundary with the ZVEI region.

In Section IV, we briefly describe the functionality of the foot-
mounted inertial navigation system (INS), which computes the
position, velocity, and orientation estimates of the sensor dur-
ing gait. We use an INS in the tracking module to estimate the
speed (�2-norm of the velocity vector) of the foot. To improve
the detection of the FOG episodes, we develop a point-process
filtering module in Section V. The point-process filter computes
the pFOG by combining the output of the detectors with the
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information about the speed of the foot. The time periods with
high pFOG determine the onset and duration of the FOG event.
To validate the system design, we use the experimental setup de-
scribed in Section VI. With the help of an illustrative example, in
Section VII, we demonstrate the output of each system module.
In Section VIII, we present the experimental results. Our con-
clusions and directions for possible future work are presented
in Section IX.

III. DETECTION MODULES

In this section, we develop a physical model to describe the
signal from the inertial sensor during the zero-velocity and trem-
bling event, and design a statistically-based approach to detect
these gait patterns. In particular, we develop a two-step detec-
tion algorithm to identify zero-velocity and trembling events.
We formulate the two-step detection algorithm as a hypothesis
testing problem and solve it using the generalized likelihood
ratio test (GLRT) framework [29].

A. Signal Model and Statistics

If ya
k ∈ R3×1 and yω

k ∈ R3×1 denote the measurements of
a three-axis accelerometer and a three-axis gyroscope, respec-
tively, at time instant k, then these measurements can be modeled
as

ya
k = sa

k + ea
k

yω
k = sω

k + eω
k . (1)

Here, sa
k and sω

k denote the true specific force and angular ve-
locity experienced by the accelerometer and gyroscope, respec-
tively. Further, ea

k and eω
k denote the measurement errors of the

accelerometer and gyroscope, which are assumed to be white,
mutually uncorrelated, and Gaussian distributed with zero mean
and covariance matrices σ2

aI3 and σ2
ω I3 , respectively.

Based on clinical observations, FOG patterns include alter-
nating trembling in the lower extremities (includes the hip, knee,
and ankle joints, and the bones of the thigh, leg, and foot), and
no movement of the limbs and trunk [30], [31]. Short, shuf-
fling steps, not specific to or necessarily related to freezing,
are observed in parkinsonian gait [32], [33]. Festination is usu-
ally associated with a progressive shortening and quickening
of steps that often results in a freeze where forward/backward
progression ceases [34].

We model gait patterns such as no movement of limbs in
FOG, and short, shuffling steps in parkinsonian gait, as ZVEI.
These events are associated with the flat foot phase of a gait
cycle. ZVEI are defined as the time instances when the IMU is
stationary, i.e., the IMU has a constant position and orientation;
see Fig. 2(a) for illustration. During ZVEI, the accelerometer
measures only the earth’s gravitational acceleration, i.e., gva ,
where g and va are the magnitude and direction of a unit vector
along the gravity. For parkinsonian gait with short, shuffling
steps, the duration of the ZVEI are smaller than regular steps
during normal PD gait. Further, we model gait patterns such as
alternating trembling in FOG, and short, quickening steps on the
toes and forepart of the feet in festinating gait, as TREI. These

events are associated with heel lift-off and heel strike phase of a
gait cycle. TREI are modeled as the motion of the IMU about an
unknown fixed axis, and of unknown magnitude which depends
on the severity of the trembling; see Fig. 2(b) for illustration.
During trembling event, the accelerometer measures the sum
of the inertial acceleration and gravitational acceleration, i.e.,
αa

kua + gva , where αa
k and ua are the magnitude and direc-

tion of a unit vector along the trembling axis. In this case, the
accelerometer cannot distinguish between the axis aligned with
the gravity field and trembling.

B. Detector-I

The goal of the first detector is to detect zero-velocity and
trembling events, and filter out gait patterns that are not as-
sociated with FOG. The detection problem can be formulated
as

H1 ,H2 � IMU is stationary or experiencing trembling

H0 � Otherwise. (2)

For notation, we denote H1 and H2 together as H1,2 . Under
H1,2 , the specific force measured by the accelerometers in (2),
in the time window ΩN of size N consisting of the time samples
{k, . . . , k + N − 1}, can be modeled as

H1 ,H2 : ∀k ∈ ΩN : sa
k = αa

kua + gva ,

H0 : ∃k ∈ ΩN : sa
k �= αa

kua + gva . (3)

Given the signal model in (3), it can be shown (see Ap-
pendix B of the supplementary material) that the generalized
loglikelihood ratio test for detecting ZVEI and TREI are given
by

TD1 (y
a) =

1
N

∑

k∈ΩN

{
1
σ2

a

‖ya
k − gv̂a‖2

P ⊥
ûa

}
H1 2
< γ′

D1
, (4)

where v̂a and ûa denote the estimated unit vectors in the di-
rection of earth’s gravitational acceleration vector and the trem-
bling axis, respectively. Here, ya = [(ya

k )T , . . . , (ya
k+N −1)

T ]T ,
P⊥

ûa = I − ûa(ûa)T , and γ′
D1

is the detector threshold.
To understand the intuitive meaning of (4), let us assume that

the measurement error in the accelerometer is zero. When the
IMU is stationary, the output from the accelerometer is given
as gva . If the estimate of v̂a is close to va , then the weighted
norm in (4) is close to zero. When the IMU experiences trem-
bling about a fixed axis, ua , then the output of the accelerometer
consists of both a gravitational and a trembling component. In
Appendix A of the supplementary material, we show that ûa

is the eigenvector in the direction of maximum eigenvalue of
Ga =

∑
k∈ΩN

(ya
k − gv̂a)(ya

k − gv̂a)T . If the estimate of v̂a

closely matches the true direction of the gravitational vector,
va , then, the matrix Ga captures the outer product of the ac-
celerometer output along the trembling axis. The matrix Ga

is symmetric and positive semi-definite. For any symmetric
and positive semi-definite matrix, the eigenvector correspond-
ing to the maximum eigenvalue represents the direction of the
semi-major axis, and its eigenvalue represents the length of
the semi-major axis. Therefore, the eigenvector, ûa , represents



PRATEEK et al.: MODELING, DETECTING, AND TRACKING FREEZING OF GAIT IN PARKINSON DISEASE USING INERTIAL SENSORS 2155

the estimated trembling axis. If the estimated trembling axis,
ûa , matches the direction of the true trembling axis, ua , then
the weighted norm in (4) is zero, because the projection of ûa

on P⊥
ûa is zero.

C. Detector-II

To distinguish ZVEI from TREI, we develop a second detec-
tor. Based on the hypotheses H1 and H2 defined in the previous
subsection, we get

H1 � IMU is stationary (ZVEI)

H2 � IMU is experiencing trembling (TREI). (5)

Under H1 , the IMU has a constant position and orientation.
Because the gyroscopes are highly sensitive to angular motion,
we include angular velocity measurements in the hypothesis
testing problem in (5). Mathematically, under the assumption
that the hypothesis H1,2 is true, the signal model for the two
hypothesis in (5) can be written as

H1 :

{
∀k ∈ ΩN : sa

k = gva ⇐⇒ αa
k = 0

∀k ∈ ΩN : sω
k = 0

H2 :

{
∃k ∈ ΩN : sa

k = αa
kua + gva , ⇐⇒ αa

k �= 0

∃k ∈ ΩN : sω
k �= 0.

(6)

Given the signal model in (6), it can be shown (see
Appendix B of the supplementary material) that the general-
ized loglikelihood ratio test for detecting ZVEI or TREI are
given by

TD2 (y) =
1
N

∑

k∈ΩN

{
1
σ2

ω

‖yω
k ‖2

+
1
σ2

a

[∥∥∥∥ya
k − g

ȳa

‖ȳa‖
∥∥∥∥

2

− ‖ya
k − gv̂a‖2

P ⊥
ûa

]}
H1
<γ′

D2
, (7)

where y is the concatenation of the accelerometer and gyro-
scope measurements given by [(ya)T , (yω )T ]T , yω = [(yω

k )T ,
. . . , (yω

k+N −1)
T ]T , ȳa = (1/N)

∑
k∈ΩN

ya
k , and γ′

D2
is the de-

tector threshold.
To understand the intuitive meaning of (7), let us again assume

that the measurement error is zero for both the accelerometer
and gyroscope. When the IMU is stationary, i.e., during zero-
velocity event, the first term contains only error measurements,
which are set to zero. The last term in (7) follows the same ex-
planation as before, i.e., when the estimates of v̂a and ûa match
the true direction of the gravity vector and trembling axis, re-
spectively, then the last term in (7) goes to zero. Further, when
the IMU is stationary, the average mean vector of the measured
accelerometer data seen in the window ΩN , denoted as ȳa , is
the same as the measured accelerometer data, which is given
as gva . Due to this, the second term in (7) also goes to zero.
Therefore, under the assumption that the IMU is stationary and
the measurement error is zero, the test statistic in (7) is close
to zero. However, during a trembling event in Fig. 2 and under
the assumptions that the measured errors are zero, the last term
in (7) goes to zero when the estimates ûa and v̂a are close to

the true values. The first and second terms are non-zero because
gyroscope measurements are non-zero and accelerometer mea-
surements contain both gravitational and specific force compo-
nents. Therefore, the test statistic in (7) is non-zero under H2 .

Observation: The signal model in (3) captures a large set
of gait patterns that are not associated with FOG. The signal
model in (6) distinguishes zero-velocity events from trembling
events, but cannot filter out gait patterns that are not associated
with FOG. In other words, the trembling events identified by the
Detector-II also include falsely detected FOG events. Therefore,
to filter out these falsely detected events, we use the fact that
FOG events are associated with small foot speeds [27], [28]. This
is done using a point-process filter, which fuses the output from
the detector framework with the speed information provided by
a foot-mounted inertial navigation system.

IV. TRACKING MODULE

In this section, we present a brief overview of the tracking
module used in the system design as shown in Fig. 1. Foot-
mounted inertial navigation systems (INSs) are frequently used
for ambulatory gait analysis [35]–[39] and pedestrian navigation
[40]–[42]. We use a zero-velocity aided foot-mounted inertial
navigation system described in [43]–[45] to estimate the speed
of the foot during the gait. The INS uses the accelerometer and
gyroscope sensor measurements along with the ZVEI [46] to
estimate the position, velocity, and orientation of the foot via
dead reckoning [47].

V. FILTERING MODULE

In this section, we describe the filtering module in the system
design in Fig. 1. We develop a point-process which is character-
ized by the conditional intensity function [48], whose parame-
ters are modeled as a Gaussian autoregressive model [49]–[52].
By combining the information about the speed of the foot with
the detected TREI via a conditional intensity function, we com-
pute the probability of FOG (pFOG).

Recall that Detector-I identifies the zero-velocity and trem-
bling events, and Detector-II only separates zero-velocity events
from trembling events. The edges of the TREI also contain infor-
mation of either the beginning or ending of ZVEI, which repre-
sents FOG patterns, characterized by small foot speeds. There-
fore, we detect the edges of the TREI and model them as spikes
generated from a point-process. The spikes are divided into
equal segments or bins of length B = ΔFs samples, where Δ is
the width of the bin interval in seconds and Fs is the sampling
rate of the IMU. Let δBk and bk denote an indicator variable1

and the number of spikes in the interval ((k − 1)Δ, kΔ], k ∈ N,
respectively. Further, let wk denote a weight associated with
each bin interval. FOG patterns such as trembling and short
shuffling steps are characterized by small foot speeds [27]. To
identify bins with small foot speeds, we first compute the aver-
age bin speed for the bin intervals ((k − 1)Δ, kΔ]. Then, we use
a Gaussian kernel with zero mean and σs standard deviation to
assign larger weights to bins with smaller average foot speeds.

1δBk = 1, if bk �= 0 and δBk = 0, if bk = 0.
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In our proposed method, the system parameter σs is considered
as a participant-specific tunable parameter. As σs decreases, the
bin weights corresponding to smaller foot speeds increase.

Let δB1:k = [δB1 , . . . , δBk ], b1:k = [b1 , . . . , bk ], and w1:k
= [w1 , . . . , wk ] denote the activity of observable parame-
ters up to time kΔ. Let Hk = [δBk−l−1:k−1 , bk−l−1:k−1 ,
wk−l−1:k−1 ] denote the history of the activity of the spikes
observed in the interval ((k − l − 1)Δ, (k − 1)Δ], where l rep-
resents length of the history. Let θk = [θk,0 , . . . , θk,l−1 ]T ∈ Rl

denote a latent parameter vector. We model the number of spikes
observed in the k-th interval as a binomial distribution with
probability mass function given by

f(bk |θk ,Hk ) =
(

B

bk

)
pbk

k (1 − pk )(B−bk ) , (8)

where

pk =
exp (λk (θk ))

1 + exp (λk (θk ))
and (9)

λk (θk ) = α + β

(
l−1∑

i=0

θ2
k,iwk−iδBk−i

)
. (10)

In (9), pk is a sigmoid function that represents instantaneous
pFOG in the interval ((k − 1)Δ, kΔ], α denotes a fixed back-
ground firing rate, and β is a fixed scaling parameter. The ex-
ponential term is defined as the conditional intensity function
[48] and the log-exponential is denoted as λk (θk ). In (10), we
model the history of spikes as an auto-regressive process where
θk,i represents the auto-regressive coefficients. The parameters
that define the conditional intensity function in (10) are either
fixed or observable, except for θk (a latent parameter vector),
which is modeled as a linear evolution process with Gaussian
errors [49]–[53]. We define the evolution process of the latent
parameter as

θk+1 = F kθk + ηk , (11)

where F k is the system evolution matrix and ηk is zero-mean
additive Gaussian noise with covariance Qk . The probability of
freezing of gait (pFOG) is given as

p′k =
1
l

l−1∑

i=0

pk−i .

Applying Bayes’ rule to (8) and (11), the posterior density of
the parameter vector in the k-th interval is given as

f(θk |bk ,Hk ) =
f(bk |θk ,Hk )f(θk |Hk )

f(bk |Hk )
, (12)

where

f(θk |Hk ) =
∫

f(θk |θk−1 ,Hk )f(θk−1 |bk−1 ,Hk−1)dθk−1

=
∫

f(θk |θk−1)f(θk−1 |bk−1 ,Hk−1)dθk−1 . (13)

The last equality comes from (11), where θk does not de-
pend on the aggregate history of the spikes, Hk . Based on
(11), we assume that the latent parameter vector, θk , follows a

Gaussian distribution. There is no closed form expression for the
Bayesian recursive filter in (12) and (13). Therefore, we develop
the approximate filters based on the Gaussian approximations.
The Gaussian approximation of the posterior density of the la-
tent parameter vector in (11) can be motivated by the fact that
the Binomial distribution in (8) converges towards a Gaussian
distribution as the number of samples in each bin, B, increase.
Let θk |k−1 = E[θk |Hk ] and P k |k−1 = Cov[θk |Hk ] denote the
mean and the covariance of one-step prediction density. Simi-
larly, let θk |k = E[θk |bk ,Hk ] and P k |k = Cov[θk |bk ,Hk ] de-
note the mean and the covariance of the posterior distribution.
Then, using the Laplace Gaussian filter approximation method
[52], [53], the point-process filter equations are given as

θk |k−1 = F kθk−1|k−1 , (14a)

P k |k−1 = F kP k−1|k−1F
T
k + Qk , (14b)

θk |k = θk |k−1 + P k |k

[
(bk − Bpk)

∂λk (θk)
∂θk

]

θk |k −1

,

(14c)

(P k |k )−1 = (P k |k−1)−1 +

[
(Bpk − bk )

∂2λk (θk )
∂θk∂θT

k

+Bpk (1 − pk )
∂λk (θk )

∂θk

∂λk (θk )
∂θk

T
]

θk |k −1

.

(14d)

We provide the details of the derivation of (14a)–(14d) in
Appendix C of the supplementary material. Equations (14a)
and (14b) are the mean and covariance of a one-step prediction
distribution. Similarly, (14c) and (14d) are the mean and co-
variance of the posterior distribution, respectively. The second
term in (14c) is the learning rate, analogous to the posterior
update step of a Kalman filter. The term (bk/B − pk ) in (14c)
is the innovation term, because bk/B represents the probability
of spikes in the measurement model and pk is the probability
of spikes in the state model, observed in the k-th time interval.
However, unlike the Kalman filter posterior update step, here
the posterior update step depends on the posterior update co-
variance matrix instead of the prediction covariance matrix. We
compute pk in (9), evaluated at θk = θk |k at every time instance
kΔ, to obtain the instantaneous pFOG.

VI. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we present the details of our experimental
setup to assess gait in people with PD. We define the terminology
of the scoring method required for tuning the parameters of the
detector and the point-process filter. We also provide a brief
description of the data collection mechanism and the hardware
used in the experimental setup.

A. Experiments

To assess gait, we assigned five different tasks that are likely
to trigger a FOG event. The list of the tasks and their descriptions
are given in Table I. As a reference system, we use video-based
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TABLE I
BALANCE ASSESSMENT TASKS AND THEIR DESCRIPTIONS

Task Description of the task

BACK The participant was asked to walk backwards at a comfortable pace along a 3 meter straight path. On reaching the end, the
participant made a 180◦ turn and re-traversed the path in the next trial.

BLOCK A wood block 6 inches high, 24 inches wide, and 14.5 inches deep was placed between two cones. The total distance between the
center of each cone and the nearest edge of the block was 22.5 inches. The participant was asked to start between one of the cones
and the block, step up onto the block and step down between the block and the second cone. The participant made a 180◦ turn in the
small space between the block and the cone, and repeated the trial.

EIGHT The participant was asked to follow a figure-eight trajectory around two cones placed 1.5 meters apart (cone center to cone center).
Two chairs were placed with the backs inward, approximately shoulder width apart at the center of the figure-eight loop to create a
narrow space. The participants started next to a cone at one end of the figure-eight loop, completed the figure-eight (traveling
through the narrow space), and positioned themselves on the other side of the first cone for the next figure-eight.

NARROW The participant was asked to walk along a path 3 meters long, with three sets of chairs placed with the backs inward, about shoulder
width apart in the middle 1.5 meters of the path. At the end of the 3 meter path, the participant made a 180◦ turn and re-traversed
the path in the next trial.

TURN The participant was asked to do an in-place 180◦ turn. The participant began by standing stationary and was told to turn either right
or left to face the wall behind them.

technology to determine the time instances of FOG. With the
help of trained gait analysis experts, we mark the instances of
FOG observed in the videos with a temporal resolution of one
second. The experts watched each video together and came to
consensus on the presence and timing of definite or potential
freezing episodes. The synchronization of the video and IMU
data is done manually.

B. Metrics

We define four metric variables that are used to evaluate the
performance of the system design. The definition of each metric
is as follows:

1) Detection Length: (DL) is defined as the length of the
overlapping regions detected using both video data and
the inertial sensor based method, for an episode of FOG.
In other words, DL reflects the times when both methods
agree that FOG is present.

2) Missed Detection Length: (MDL) is defined as the length
of the non-overlapping regions between the FOG in-
stances detected using video data and the inertial sensor
based method, for an episode of FOG. When the inertial
sensor based method fails to detect a FOG instance de-
tected by the video data in either foot, then the length of
that instance of FOG is also considered as MDL.

3) False Alarm Length: (FAL) is defined as the length of
the non-overlapping region which is detected as a FOG
instance by the inertial sensor based method, but not by
the experts marking the video data.

4) Total Length: (TL) is defined as the total length of the
IMU data (the same as the duration of the video data).

In Fig. 3, we present an illustration of DL, FAL, and MDL.
Based on the metric variables, we define two performance met-
rics, namely, the true positive rate (TPR) or sensitivity, and the
false alarm rate (FAR):

TPR =
DL

DL+ MDL
and FAR =

FAL
TL

. (15)

Fig. 3. An illustration of FAL, DL, and MDL. The overlapping region
between the video and inertial sensor method is the detection length
(gray color). The region detected by the video but not by the inertial
sensor method is the missed detection length (light orange color). The
region detected by the inertial sensor method but not by the video is the
false alarm length (light blue color).

If TPR is close to one, then the episodes of FOG detected
by the IMU match closely with the video data. Similarly, if
FAR is close to zero, then the number of falsely detected FOG
episodes is small. We say that an inertial sensor based algorithm
performs as well as the video-based method if both TPR and
1 − FAR are close to one. When DL = 0 and MDL = 0, we
say the TPR = 1, because no FOG episodes were detected by
the video data nor by the algorithm using the IMU data.

C. Data Collection and Hardware

We use the Openshoe module to collect the accelerometer and
gyroscope sensor data [43]. The sensors operate at a sampling
frequency of Fs = 1000 Hz. We tape the sensor module to the
heel of each shoe firmly, as shown in Fig. 2. The choice of
the sensor location [4] enables us to compute gait parameters
such as speed of the foot which can be useful in understanding
the underlying mechanism of FOG. The sensors are powered by
micro-USB cords whose other ends are plugged into a USB-port
of a laptop. The laptop, which weighs less than 1.2 kilograms, is
placed in a backpack carried by the participant. Cords are firmly
strapped around each leg, so that they did not interfere with gait
and there are minimal cord movements captured by the sensors.

VII. ILLUSTRATIVE EXAMPLE

In this section, with the help of an illustrative example, we
demonstrate the output of each module of the proposed system
design in Fig. 1. In particular, we use the inertial sensor data for
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Fig. 4. ZVEI/TREI detected by Detector-I for TT004–BLOCK task.
(a) Three-axis accelerometer signal. (b) Three-axis gyroscope signal.
(c) Output of Detector-I (ZVEI/TREI).

participant identity (PID) TT004, performing the BLOCK task,
during which the participant experiences a turning freeze.

A. Detector-I

The goal of Detector-I is to detect shuffling or trembling mo-
tion intervals, which are modeled as ZVEI and TREI, respec-
tively. In Fig. 4(a) and (b), we plot the outputs of the three-axis
accelerometer and the three-axis gyroscope sensor, respectively.
In Appendix D of the supplementary material, we demonstrate
the procedure to obtain the system parameters for Detector-I,
using video data as the reference system. We set the size of the
window ΩN = 100, the standard deviation of the accelerometer
signal σa = 1.0, and the threshold of Detector-I γ′

D1
= 34.53.

The output of Detector-I based on the test statistic in (4) is
shown in Fig. 4(c). Detector-I in Fig. 4(c) is ON when the an-
gular velocities measured by the gyroscope are zero and the
specific force measured by the accelerometer in the y-axis is
9.8 m/s2 , indicating ZVEI. Further, Detector-I is also ON at
some non-zero velocity instances, indicating possible TREI as-
sociated with FOG.

B. Detector-II and INS

As stated previously, the goal of Detector-II is to distinguish
ZVEI from TREI based on the output of Detector-I. We refer to
Appendix E of the supplementary material to obtain the design
parameters of Detector-II. We use the same window length ΩN

as in Detector-I. In addition, we set the standard deviation of the
gyroscope σω = 0.8 and the threshold γ′

D2
= 2.00. The output

Fig. 5. Detector-II separates ZVEI from TREI. The inertial navigation
system estimates the speed of the foot. (a) Output of Detector-II (TREI).
(b) Output of Detector-II (ZVEI). (c) Output of the INS (speed of the foot).

of Detector-II, based on the test statistic in (7), is shown in
Fig. 5(a) and (b). In Fig. 5(b), Detector-II detects ZVEI which
can be verified with the information about the speed of the foot
shown in Fig. 5(c). When zero-velocity updates are ON, the
speed of the foot is close to zero. The time intervals that are
not identified as ZVEI by Detector-II are considered as TREI,
as shown in Fig. 5(a). However, not all the TREI are associated
with FOG. Hence, to filter out falsely detected TREI that are not
associated with FOG, we use the proposed point-process filter.

C. Point-Process Filter

Recall that the goal of the point-process filter is to filter out
the falsely detected FOG events in the TREI. The edges in the
TREI contain information about both ZVEI and TREI which
represents FOG patterns characterized by small foot speeds. In
Fig. 6(a), we model the edges of TREI as spikes and overlay the
speed of the foot obtained from the inertial navigation system.
In Table II, we list the values assigned to the parameters of the
point-process filter. The participant-specific tunable parameter
σs assigns a unit weight to bin interval with average bin speed
zero, as shown in Fig. 6(b). In Fig. 6(c), the region consisting
of high density of spikes with small foot speeds corresponds
to an increase in the pFOG curve with some delay. We set the
pFOG threshold as 0.7. When the pFOG is greater than 0.7, we
determine the local minimum of the pFOG curve and denote it as
the onset time of FOG. The duration of freezing is determined
by subtracting the instant when the pFOG curve goes below
0.7 from the onset time, as indicated with red background in
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Fig. 6. Detection of FOG using the point-process filter. (a) Spikes with
an overlay of foot speed. (b) Bin weights with Δ = 0.1 s and σs = 0.4.
(c) pFOG output of the point-process filter.

TABLE II
POINT-PROCESS FILTER PARAMETERS

Parameters of the point-process filter Assigned value

Width of each bin, Δ 0.1 seconds
Length of each bin, ΔFs 100 samples
Length of the history of spikes, l 10
Background firing rate, α −15
Fixed scaling parameter, β 35
State transition matrix, F k Il

Process noise covariance matrix, Qk 10−14 Il

Initial state of the parameter vector, θ0 |0 0.3511l

Initial covariance matrix, P 0 |0 102 Qk

Participant-specific tunable parameter, σs 0.4

Fig. 6(c). Further, on computing the onset and duration of FOG
event, we notice a significant overlap between the FOG region
detected by processing the IMU data using our proposed system
design (represented with red background) and the video data in
the reference system (represented with gray background). The
mismatch between the FOG region detected using the video
and the inertial sensor data in Fig. 6(c) is also attributed to the
difference in the temporal resolution of the two systems under
consideration.

VIII. EXPERIMENTAL EVALUATION

In this section, we analyze the performance of the sys-
tem design in Fig. 1, using real data from 16 people with
PD. For our sample, there were seven females, the mean age

was 70.3 ± 7.9 years, the mean disease duration was 5.0 ±
3.6 years, and the median off medication Movement Disor-
ders Society Unified Parkinson Disease Rating Scale Motor
Subsection (MDS_UPDRS_III) Score was 35.5 (first and third
quartiles: 30.5, 41.5). The IMU data and video data for all the
participants were recorded for the list of gait tasks in Table I,
with the only exceptions being TT006–NARROW and TT006–
EIGHT, which were not recorded due to network issues. The
true instances of FOG events detected in the video data are
manually marked by a trained gait analysis experts. We use the
definitions of TPR and FAR in (15) to evaluate the performance
of the proposed method for all the tasks listed in Table I. Due to
hardware issues with respect to one of the Openshoe modules,
data were not available for both feet for all participants. Hence,
the data analysis was done using only the left foot inertial sensor
data. We also compare our results with an existing method that
determines FOG events based on the FI method [19], computed
using the vertical axis measurements of the accelerometer data.
To calculate the FI [19], we downsample the accelerometer data
by a factor of 10 and compute the ratio of the square of the area
of the power spectrum in the ‘freeze-band’ and ‘loco-band’, us-
ing a moving window of 6 seconds. The FI is normalized by
multiplying by 100 and taking the natural logarithm.

Out of the sixteen participants, only eight (PID TT003,
TT004, TT005, TT007, TT013, TT017, TT021, and TT027)
demonstrated FOG. In total, 58 events of FOG were detected
using the video data, of which 38 events were categorized as
turning freeze, 12 events as initiation or gait freeze, and 8 events
as festinating gait with freezing. For each participant, we first
identified the task with the greatest number of FOG events to de-
termine the tunable parameters, i.e., the FI-threshold and kernel
parameter σs . The FI-threshold and kernel parameter were tuned
such that the number of FOG events detected was maximized for
the identified task. In the proposed method, the system param-
eters such as detector thresholds, size of the window, standard
deviation of the accelerometer and gyroscope, and point-process
filter variables remain fixed for all participants across all tasks.
Only the participant-specific tunable parameter is adjusted for
every participant and remains fixed across all tasks. For partici-
pants who demonstrated FOG in the video-based reference sys-
tem, the individual FI-threshold ranged from 4.5 to 10.0 (mean
= 6.56 and s.d. = 1.67), and the kernel parameter σs ranged
from 0.24 to 0.4 (mean = 0.30 and s.d. = 0.06). We present a
detailed analysis of our proposed approach for PID TT027 in
Appendix F of the supplementary material. In Tables III and IV,
we summarize the number of FOG events detected using FI and
our method, respectively. For simplicity, we call our method the
pFOG method. Overall, the pFOG method obtained an accu-
racy of 81.03%, i.e., 47/58 FOG events were detected using a
tuned participant-specific kernel parameter (see Table III). Fur-
ther, when compared with the FI method, our method shows
either an improvement or equivalent performance in detecting
different types of FOG events (see Table IV). We also compared
our proposed approach with the FI method for a fixed value of
participant-specific tunable parameter and FI-threshold. These
values were obtained by taking the average of these parame-
ters across all FOG participants (see Table III). The results are
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TABLE III
NUMBER OF FOG EVENTS DETECTED FOR DIFFERENT PARTICIPANTS ACROSS THE GAIT TASKS

PID PARAMETER BACK BLOCK EIGHT NARROW TURN TOTAL

FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG

TT003 7.0 0.40 (0/0) (0/0) (0/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/1) (0/1)
TT004 4.5 0.24 (0/2) (2/2) (5/6) (5/6) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (5/8) (7/8)
TT005 7.0 0.35 (0/1) (1/1) (0/0) (0/0) (0/0) (0/0) (0/1) (1/1) (0/0) (0/0) (0/2) (2/2)
TT007 10.0 0.24 (5/8) (6/8) (0/0) (0/0) (0/1) (1/1) (0/1) (0/1) (0/0) (0/0) (5/10) (7/10)
TT013 6.0 0.25 (0/0) (0/0) (1/3) (2/3) (0/0) (0/0) (2/2) (1/2) (0/0) (0/0) (3/5) (3/5)
TT017 7.0 0.40 (0/0) (0/0) (1/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (1/1) (0/1)
TT021 5.0 0.30 (1/1) (1/1) (3/3) (3/3) (1/2) (1/2) (0/0) (0/0) (1/1) (1/1) (6/7) (6/7)
TT027 6.0 0.29 (3/3) (3/3) (7/8) (7/8) (4/4) (3/4) (2/3) (3/3) (5/6) (6/6) (21/24) (22/24)

TOTAL 6.56 (avg) 0.30 (avg) (9/15) (13/15) (17/22) (17/22) (5/7) (5/7) (4/7) (5/7) (6/7) (7/7) (41/58) (47/58)

TABLE IV
DETECTION PERFORMANCE FOR DIFFERENT TYPES OF FOG EVENTS

Event type (No. of events) (tuned) FI (tuned) pFOG

Turn Freeze (38) 71.05% (27) 84.21% (32)
Initiation/Gait Freeze (12) 75.00% (9) 75.00% (9)
Festination with Freeze (8) 62.50% (5) 75.00% (6)
Overall (58) 70.68% (41) 81.03% (47)

TABLE V
AVERAGE VALUE OF TPR AND FAR

Performance Metric FI pFOG

Avg. FAR (non-FOG participants) 0.07 0.03
Avg. TPR (FOG participants) 0.66 0.73
Avg. FAR (FOG participants) 0.21 0.07
Avg. TPR (all participants) 0.82 0.86
Avg. FAR (all participants) 0.15 0.05

presented in Appendix G of the supplementary material. For
a fixed value of the participant-specific tunable parameter, the
pFOG method obtained an accuracy of 72.41% whereas the
FI method obtained an accuracy of 56.68% (see Table 1 of the
supplementary material). This observation motivates the need to
develop methods that can automatically adjust the participant-
specific tunable parameter based on individual gait patterns.

Next, we compute the TPR and FAR for all participants
across all tasks, using video as the reference system. For par-
ticipants who did not exhibit FOG, the FI-threshold is set to
the mean value of the FI-threshold obtained for FOG partici-
pants, rounded to the nearest integer. Similarly, for non-FOG
participants, the kernel parameter σs = 0.4, a value which as-
signs a unit weight if the average speed in the bin is zero. We
call this the ‘baseline setting’. In Table V, we summarize the
average values of TPR and FAR for all tasks across all partici-
pants. We first notice that the proposed method demonstrates a
low average FAR for non-FOG participants using the baseline
setting. Next, we observe that the average value of TPR for
FOG participants using the proposed and existing method are
nearly the same. However, the proposed method demonstrates
an overall accuracy of 81.03% (see Tables III and IV). Further,
the proposed method shows a more than three-fold decrease in

the average value of FAR for FOG participants. A similar trend
is also observed in the average values of TPR and FAR for all
tasks across all participants using the pFOG method, displaying
an overall improvement in the accuracy of determining the onset
and duration of FOG.

IX. SUMMARY AND CONCLUSION

In this paper, we introduced a system design to address the
problem of detection of FOG using inertial sensors. We devel-
oped a physical model for the sensor data that describes the
trembling motion during FOG events. Next, we designed a gen-
eralized likelihood ratio test framework to develop a two-stage
detector for determining the zero-velocity and trembling events
in the gait. We also developed a point-process filter that com-
bines the output of the detectors with information about the
speed of the foot, provided by a foot-mounted inertial naviga-
tion system, and calculated the probability of FOG. Our re-
sults demonstrate an overall improvement in detecting the num-
ber of FOG events and also a three-fold decrease in the false
alarm rate when compared with an existing method. The price
paid is an increased computational load and the need for ad-
ditional sensors (gyroscopes). However, considering that ultra-
low-cost IMUs today can be manufactured at cost less than
one dollar and that powerful floating point micro-controllers are
readily available, advanced signal processing strategies such as
that proposed in the paper are practical and feasible for most
applications.

In the future, we plan to develop an adaptive design frame-
work which learns the system parameters based on the FOG
event and dynamically adjusts the model parameters accord-
ingly. Development of a valid, reliable, and dynamic method of
real-time identification of FOG is critical to better understand
patterns and frequency of FOG in daily life. An enhanced under-
standing of FOG may lead to development of novel treatment
approaches to address FOG events in real-time.
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